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Abstract. The fluxon solutions of a boundary problem for the sine-
Gordon equation (SGE) are investigated numerically in dependence on
the boundary conditions. Interconnection between fluxon and constant so-
lutions is analyzed. Numerical results are discussed in context of the long
Josephson junction model.
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1 Introduction

The sine-Gordon equation is a nonlinear hyperbolic partial differential equation
involving the d’Alembert operator and the sine of the unknown function. The
equation reads

utt − uxx + sinu = 0 , (1)

where u = u(x, t). It arises in differential geometry and various areas of physics,
including applications in relativistic field theory, Josephson junctions (JJs) or
mechanical transmission lines. The stack of coupled JJs describing by system of
coupled sine-Gorgon equations is investigating very intensively today [1,2,3].

In the framework of the long JJs model, the dynamics of the magnetic flux
in a JJ of length 2l is described by the perturbed sine-Gordon equation:

ϕxx − ϕtt − αϕt = sinϕ− γ , t > 0 , x ∈ (−l, l) (2)

with boundary conditions
ϕx(±l, t) = he , (3)

where ϕ is the magnetic flux distribution, he – the external magnetic field, γ –
the external current and α ≥ 0 – the dissipation coefficient.

The aim of this work is a numerical investigation of the properties of the
static fluxon solutions of Eq.(2) under the influence of the external magnetic
field parameter he in (3). Such solutions satisfy the following boundary problem

− ϕxx + sinϕ− γ = 0, x ∈ (−l; l), ϕx(±l) = he . (4)
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Here, we only consider the case of the JJ length 2l = 10 with zero external
current γ = 0.

2 Numerical approach

The static fluxon solutions of Eq.(2) are obtained numerically, by solving of the
boundary problem (4). The stability analysis is based on numerical solution of
the following Sturm-Liouville problem [4]

− ψxx + q(x)ψ = λψ, ψx(±l) = 0, q(x) = cosϕ(x, p), p = (l, he, γ). (5)

In this approach, the minimal eigenvalue of Eq.(5) λ0(p) > 0 corresponds to a
stable solution. In case λ0(p) < 0 solution ϕ(x, p) is unstable. The case λ0(p) = 0
indicates a bifurcation with respect to one of parameters p = (l, he, γ).

The numerical solving of Eq.(4) is based of the continuous analog of Newton’s
method [5]. At each Newtonian iteration the corresponding linearized problem
is solved, on a uniform grids with 1025 number of nodes, using a three-point
Numerov approximation of the fourth order accuracy [6].

For numerical solution of the Sturm-Liouville problem (5) we applied the
standard three-point second order finite-difference formulae. First several eigen-
values of the resulting algebraic three-diagonal eigenvalue problem are obtained
by means of the standard EISPACK code. Details of numerical scheme are de-
scribed in [7,8,9] for the double sine-Gordon equation.

The known for he = 0 solutions M0 and Φ1 are numerically path-followed to
non-zero positive he. At each ith step of the numerical continuation we analyze

the stability of solution ϕ(x, h
(i)
e ) and calculate the following physical character-

istics:

– full magnetic flux of the distribution ∆ϕ(i)ϕ = ϕ(l, h
(i)
e )− ϕ(−l, h

(i)
e );

– quantity N denoted “number of fluxons” in [7] and determined as follows

N [ϕ(x, h(i)e )] =
1

2lπ

l
∫

−l

ϕ(x, h(i)e ) dx. (6)

Note, since each solution ϕ of Eq.(4) is defined with an accuracy 2kπ (k ∈ Z)
then the value N [ϕ] is also defined with accuracy 2k. The arbitrariness at the
choice of integer number k can be used for the “concordance” of the value N
with the value of the full magnetic flux ∆ϕ according to the condition

|N [ϕ]−∆ϕ/2π| → min . (7)

Below, as in [7,8,9,11], solutions ϕ with n = N where N satisfies Eq.(7) are
denoted ϕn.

The crossing through the turning points in the numerical continuation (where
the direction of the moving along the curve ∆ϕ(he) changes as we follow on the
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new branch) was organized as in [10]. The turning points are identified with help
of the relation that is tested at each ith step of numerical continuation:
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∣

he
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(i−1)

∆ϕ(i) −∆ϕ(i−1)

∣

∣

∣

∣

∣

< ε. (8)

where ε > 0 is small known quantity. Note that (8) is a simple approximation of
equality dhe/d∆ϕ = 0 that is valid at the turning points of the curve ∆ϕ(he). In
case we run into a turning point the sign of he-increment should be changed. At
each step of the numerical continuation, the initial guess for Newtonian process
was chosen in the form

ϕ(h(i+1)
e

) = ϕ(h(i)
e
) + (h(i+1)

e
− h(i)

e
) ·
ϕ(h

(i)
e )− ϕ(h

(i−1)
e )

h
(i)
e − h

(i−1)
e

(9)

that prevents the continuation from reversing to the previous branch of ∆ϕ(he).

3 Numerical results
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Fig. 1. Internal magnetic field distri-
bution ϕx(x) associated with the state
M0 for several values of the magnetic
field he.

Fig. 2. Internal magnetic field distri-
bution ϕx(x) associated with the state
Φ1 for several values of magnetic field
he.

Two basic distributions are known at he = 0: the uniform Meissner solution
M0 with N [M0] = 0 and the fluxon solution Φ1 with N [Φ1] = 1 ([7]). Minimal
eigenvalue λ0 of Eq.(5) is negative for Φ1 and positive for M0. As we continue
basic state M0 to he > 0 λ0 stays positive, i.e. the branch is stable until he = 2.
In the Φ1 case, the minimal eigenvalue λ0 crosses zero at the point he = h1 =
0.054, i.e. the branch is unstable for 0 ≤ he ≤ h1 and stable for h1 < he <
2.098. Transformation of the internal magnetic field shape of basic solutions in
dependence on he is shown on Figs.1, 2.
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Fig. 3. Dependence of the full magnetic flux ∆ϕ on the magnetic field he for
fluxon distributions associated with M0 and Φ1. Solid and dashed lines corre-
spond, respectively, stable and unstable states. Light circles indicate the turning
points, dark circles indicate the points where solution changes its stability.
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Fig. 4. Dependence of the minimal
eigenvalue λ0 on the magnetic field
he for the branch associated with
Φ1. Light circles indicate the turning
points, dark circles indicate the points
of stability change.

Fig. 5. Dependence of the minimal
eigenvalue λ0 on the magnetic field
he for the branch associated with
M0. Light circles indicate the turning
points, dark circles indicate the points
of stability change.

The ∆ϕ(he) branches associated with the basic solutions M0 and Φ1 are
presented on Fig.3. It is seen, at some points (light circles in Fig.3) the curves
∆ϕ(he) turn back to another, upper, branches. When the ∆ϕ(he) curve turns to
the left (“⊃”-point) the quantity N is increased to N +2. So, the branch started
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Fig. 6. Coexisting stable internal mag-
netic field distributions ϕx at magnetic
field he = 1.

Fig. 7. Coexisting stable internal mag-
netic field distributions ϕx at magnetic
field he = 2.

from the basic M0 solution at he = 0, joins the fluxons (stable and unstable)
with the even N while the another branch (associated with the Φ1 basic fluxon)
connects fluxons (stable and unstable) with the odd N .

The change of stability occurs at the points (marked by dark circles in Fig.3)
where the λ0(he) curve crosses zero, see Figs.4,5. The “⊃”- and “⊂”-turning
points are indicated by the light circles. The “⊂”-turning points connect a pair
of unstable solutions with the same number N : ϕn and ϕ̄n. An increasing N to
N + 2 is observed at the “⊃”-turning points (light circles).

Thus, for 0 < he < h1 we have a single stable static distribution (associated
with the basic solution M0). For h1 < he < hcr, hcr = 0.561 this distribution
coexist with another one associated with the basic solution Φ1. An increasing of
magnetic field he leads appearing, at hcr, (most left light circle in Fig.3) a pair of
(unstable) states (ϕ2, ϕ̄2). As he is growing next, the stabilization of ϕ̄2 occurs
(most left dark circle in Fig.3), i.e. for he = 1 we have three stable distributions
to be coexisting with unstable state ϕ2, see Fig.6. Further increasing he induces a
creation, at each “⊂”-point, of additional pair (ϕn, ϕ̄n) with growing n, see Fig.7.
At the same time, the pairs (ϕn, ϕ̄n+2) with previous values n are sequentially
disappearing at the “⊃”-points.

4 Conclusions

The detailed information on the variation of fluxon structure with external mag-
netic field in long Josephson junction is very important for correct interpreta-
tion of the experimental results. In this paper we investigated stationary fluxon
solutions of Eq.(2),(3) in dependence on the external magnetic field he. Our nu-
merical technique allowed us to establish the interconnection between the basic
solution M0 at he = 0 and the stationary distributions ϕn with even numbers
n as well as the interconnection between basic state Φ1 at he = 0 and ϕn with
odd numbers n. Coexistence of different stable n-fluxon distributions at different
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values of external magnetic field he is been shown. We consider that predicted
transformations of the stable fluxon distributions can be observed experimen-
tally by investigation of the critical current in dependence of external magnetic
field.
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